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Guided surface waves near cutoff 

By JOHN MILES 
Institute of Geophysics and Planetary Physics, University of California, San Diego, 

La Jolla, CA 92093, USA 

(Received 11 February 1987 and in revised form 31 August 1987) 

The joint effects of weak nonlinearity and weak linear damping on the dominant, 
antisymmetric gravity wave (excited by torsional oscillations of a plane wavemaker 
about a vertical axis) near its cutoff frequency in a rectangular channel are 
investigated, following Barnard, Mahony & Pritchard (1977). The evolution 
equations for the envelope of this mode are derived from the variational formulation 
previously developed for the parametrically excited cross-wave problem (Miles & 
Becker 1988). They are equivalent to those of Barnard et al., after correcting their 
damping and self-interaction terms, and, after appropriate normalization, differ from 
the cross-wave evolution equations only in the boundary condition a t  the wave- 
maker. Analytical approximations and the results of numerical integration for 
stationary envelopes (as observed in the experiments of Barnard et aE.) are presented. 
The present results are somewhat closer to the observations of Barnard et al. than are 
their calculations, but the differences between the two calculations are not 
qualitatively significant. 

1. Introduction 
Following Barnard, Mahony & Pritchard (1977) and Kit, Miloh & Shemer (1987), 

hereinafter referred to as BMP and KMS, I consider antisymmetric (with respect to 
the vertical mid-plane) gravity waves of free-surface displacement 5 in a semi-infinite 
rectangular tank of width b and depth d driven by torsional oscillations of a plane 
wavemaker, for which the longitudinal displacement is given by 

z = ~ ( y ,  t )  = -(y-&) tan ( E  sinot) (0 < y < b, -d  c: z < C), 

w1 = (gH'); (k = n/b, T 3 tanh kd), 

(1 .1)  

on the assumptions that: (i) 0 < e $ 1, (ii) w approximates the cutoff frequency 

(1.2) 

and (iii) the flow is inviscid and irrotational (although dissipation is introduced 
subsequently as a small perturbation). The boundary condition (1.1) may be expan- 
ded in the complete set cosnky in 0 < y < b and in a complete set in -d < z < 0 
that comprises the non-oscillatory term cosh k,(z + d )  plus an infinite, discrete set of 
oscillatory terms (cf. Havelock 1929), where k, is determined by 

k, tanh k, d = w2/g = K ,  (1.3) 

(note that k, = k for w = wl). The linear approximation to the velocity potential then 
is 

coshk,d K 
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wherein the first term represents the dominant (antisymmetric) mode, 

(k~-k2)-~sin[(k,2-k2)fx-wWt] (k < k,), 
- ( 1 ~ 2 - k , 2 ) - ~ e x p [ - ( k 2 - - ~ ) f x l  coswt (k > k,), (1.5) 

is derived from the boundary condition 9, = xt at x = 0 (note that f ,  = coswt at 
x = 0) through the aforementioned Fourier expansion, and the dimensionless 
potential q5, comprises the remaining modes, which decay exponentially away from 
the wavemaker. 

It follows from (1.5) that the linear approximation fails, and either nonlinearity or 
dissipation or both must be significant, in the spectral neighbourhood of k = k,. 
Weak dissipation may be incorporated through an extension of the linear analysis, 
which yields 

f ( x ,  t )  = W { X 1  eA”-iwt}, h = i(ki-k2+iinCk26)f (&?A < 0),  (1.7a, b)  

in place of (1.5) ; W signifies the real part of, and 6 is the ratio of actual to critical 
damping for the dominant mode. This damping ratio, which may be determined 
experimentally or estimated theoretically (Miles 1967), is typically small, and 
nonlinearity is a t  least as important as dissipation if 6 =  O(E), in which case 
dissipation may be neglected in the preliminary calculation of nonlinear effects and 
then introduced as a linear effect. Nonlinearity is negligible if e 4 6 = O(1). 

I proceed as in the problem of parametrically excited cross-waves (Miles 1988, 
hereinafter I ;  Miles & Becker 1988, hereinafter 11), starting from an extension of 
Luke’s (1967) variational formulation. I then introduce appropriate trial functions 
for 9 and 5, average the resulting Lagrangian over the period 27c/w, and invoke 
Hamilton’s principle to obtain a nonlinear Schrodinger equation that governs the 
temporal and spatial modulation of the dominant mode. Finally, I incorporate weak 
damping and obtain analytical approximations and numerical solutions for 
stationary envelopes. My evolution equation differs from that of BMP in the 
incorporation of temporal modulation and in consequence of what appear to be 
errors in the sign of their damping term and in their self-interaction coefficient for the 
dominant mode (see Appendix). It is equivalent to that of KMS for deep-water 
(kd & 1) waves. 

The question of whether my stationary solutions are stable, especially when there 
is more than one such solution for a particular set of parameters, remains open. The 
experimental results of BMP and KMS and the numerical solutions of the initial- 
value problem by KMS and Aranha, Yue & Mei (1982) suggest that at least some 
stationary solutions are stable for sufficiently small amplitude or sufficiently large 
damping, but that they may bifurcate to limit cycles, in which a periodic sequence 
of solitary waves propagates away from the wavemaker. 

2. Variational formulation 

the wave tank described in $1 leads to the boundary-value problem 
The assumption of motion started from rest in an incompressible, inviscid fluid in 

V2q5=0 ( X < X < C O ,  O < y < b ,  - d < z < y ) ,  (2.1) 

(2.2a, b )  
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= 0 (y = 0, b ) ,  g2 = 0 (2 = - - a ) ,  (2.3a, b )  

$z = x t+V$ .Vx  (x = X L  (2.4) 

$z+O ( X T W ) ,  (2.5) 

for the velocity potential $(x, y, z ,  t )  and the free-surface displacement c(x, y, t ) ,  
where x, y, z are Cartesian coordinates and the subscripts signify partial 
differentiation. The null condition (2.5) may be either replaced or accompanied by a 
radiation condition. 

The boundary-value problem (2.1)-(2.5) may be deduced through Hamilton's 
principle from the Lagrangian (Luke 1967; I $2), 

where the volume integral is over the semi-infinite domain bounded by the 
wavemaker (x = x), the free surface ( z  = 6) and the fixed boundaries (y = 0, b and 
z = - d ) .  An equivalent form, which incorporates the boundary conditions (2.3) and 
is more convenient for computation, is (I $2) 

where xo(y, t )  and zo(y, t )  are the coordinates of the intersection of the wavemaker 
(x = x) and the free surface ( z  = g ) .  

3. Average Lagrangian 

X, we pose the trial functions 
Proceeding as in I, but allowing for spatial modulation through the slow variable 

( k w i g ) $  = E $ ~ ( x ,  Y, Z, ~ ) + & A Y ,  Z, e;x, 7)+&1(y, Z, e;x, 71, ( 3 . 1 ~ )  

kc= f&(x, y, e)+&l(Y,  8 ;  x, 7)+€611(Y, 8 ;  x, 71, (3.lb) 

where e = @t, x = €hX, = swt. (3.2a, b,  c) 

(The allowance for temporal modulation through the slow variable 7 ,  even though we 
are concerned primarily with the stationary envelopes, facilitates the subsequent 
incorporation of linear damping.) The dimensionless pair (q50, C,), where q50 is defined 
as in (1.4), satisfies (2.1), the linear approximations to (2.2a, b ) ,  (2.3a, b ) ,  

$oz = - - - r [ k ( y - $ ) + C  cosky cash cosh k ~ ( z  kod + "'1 cos (x = o), (3.3) 

(obtained by linearizing (2.4) and subtracting out the contribution to 
of the dominant mode in (1.4)), and either (2.5) or the corresponding radiation 
bondition. The pair 

I 

cosh ko(z + d )  
cosh k, d $1 = A,,(e; x, 7 )  cosky , & = A,(O; X, 7 )  cos ky, ( 3 . 4 ~ ,  b )  

where A ,  = p ( X ,  7 )  cos e + q(X,  7 )  sin 0 = 9 { ( p  + ip) e-Ie}, (3.5) 
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and $, is the counterpart of the dominant mode in (1.4), satisfies the linear 
approximations to (2 .2a,  b )  and (2 .3a,  b ) .  We remark that $o and 9, are orthogonal 
over 0 < y < b,  -d < z < 0.t  The pair 

3T2 + 1 1 - ~ 4  cosh 2k0(z + d )  
$11 = i A i A i o [  - ( 7 ) + 3 ( 7 )  cos2ky 

1 - T 2  1 (T2 - 1 )  (T2  + 3)  3-T2 
c11 = - ( T ) ( ' ; ) + Z [  T3 ( A ; )  + (7) A ; ]  cos 2ky, (3.63) 

(( ) signifies an average over O), which describes the self-interaction of ($,, c,), has 
been chosen such that (3.1) satisfies (2.2)-(2.4) through O ( E ) .  This last constraint 
determines ($,,, ell) within the additive pair ( -OF, F ) ,  where F is an arbitrary 
function of X and 7 that must vanish in the present case in consequence of the 
requirement that dllx be bounded as 6 1' co. (In the case of a finite tank it would be 
necessary to choose F = a(T-' - T )  ( A : )  in order to ensure conservation of mass, but 
then A ,  is independent of X, so that $llx = 0.) 

Substituting (3 .1)  into (2 .7) ,  invoking (3.2)-(3.6), and averaging the result over 8, 
we obtain (after a lengthy but straightforward reduction, in which X is adopted in 
place of x as a variable of integration and ppxx+qqxx, which is derived from 
( $V2$), is integrated by parts) 

1 
-p@; + q;)lU - p 2 q  Ix-0, (3 .7)  

where Lo is the Lagrangian for p = q = 0, an error factor of 1 + O(E)  is implicit, 

K 2ew2 ' 

6T6-5T4+ 16T2-9 
, E = T [ T + k d ( l - T 2 ) ] .  

8T4 
D =  

(3 .8)  

(3.9a, b)  

We note that D 2 0 for kd 2 1.022, E > 0 for kd > 0, and D - E - 1 for kd 9 1 .  
Nonlinearity is significant only at higher (than second) order in the spectral 
neighbourhood of D = 0. 

4. Schrodinger equation 

by introducing r = p + iq, we obtain the cubic Schrodinger equation 
Invoking 6J5?d7 = 0, and combining the resulting evolution equations for p and q 

irT+iErxx + (P+iD I$) r = 0, 

and the boundary condition 

rx = i C  ( X = O ) ,  

which must be supplemented by a radiation or null condition as X ?  co. 

t BMP apparently overlook this orthogonality and remark that 'it is virtually impossible to 
assess how accurate such a partitioning [between the dominant and remaining modes] is likely to 
be. ' The present analysis removes this uncertainty. 
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Weak damping may be incorporated in (4.1) by replacing a, by a,+ia, where 

291 

a = S / E ,  (4.3) 

and 6 is the damping ratio introduced in $1 (this replacement follows from the linear 
equations, in which a, is replaced by a, + Sw if S @ 1 ) .  Damped stationary solutions 
then are governed by (4.1) with ir, replaced by iar and (4.2). Re-scaling according 
to 

?- = (8y/lDlPd(c), x = $(E/y)% (4.4a, b) 

p+ia  = yei$ (0 < 4 < n), (4.5) 

where y = (a2 +/3')$, and introducing 

a = 2-tC (DEliy-1 ( 4 . 6 ~ )  

(2-%'lDEli = 0.45 for kd B l),  we obtain 

dt5+(ei$+1dI2 s g n D ) d  = 0, 

and d,= ia ( c = O ) .  

The null condition at  X = co may be replaced by 

d,/d - ietid = -s+ic ([t a), 
where s = sin#, c = cost#. 

(4.6b) 

(4.9) 

(4.10) 

5. Stationary solutions for D > 0 
Proceeding as in I1 $ 5 ,  we now assume D > 0, introduce the amplitude A ,  the 

phase I,IF, the logarithmic derivative L (the Lagrangian makes no further appearance) 
and the wavenumber (for the envelope) K through the transformation 

(5.1 a ,  b) 

regard L and K as functions of 

z = (A/A*)',  A: = 35-3  cosq5) = 292+$2, (5.2a, b) 

and transform (4.7)-(4.9) to 

(5.3a, b) d d(ZK) - - - - ( Z [ L 2 - ~ ' ( l - Z ) ] }  dz = K2-C2(1+$Z), L- dz - --sc, 

L = -  S ,  K = c (2 = 0) ,  (5.4a, b) 

and M = A,[Z(L2+K2)]f = a, I,IFo = tan-l (LIK) (2 = Zo), (5.5a, b) 

where the subscript zero implies c = 0. The integration of (5.3) may be started at  the 
singular point 2 = 0 and continued to that point, if any, at  which M = a (M VB. Z 
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may be interpreted as a plot of avs. 2, with q5 as the family parameter, see figure 1). 
This determines 2, and @, (see figure 1) through (5.5), after which (5.1 b )  may be 
integrated to obtain 

(5.6u, b )  

The numerical integration of (5.3)-(5.6) is straightforward, although branch points 
and multiple solutions must be anticipated (cf. I1 $6). Analytical approximations 
may be obtained as in I1 $6. In  particular, the approximations 

L = -s(l-Z)$, K = 2C[i+(l--z)q-', (5.7q b )  

yield ( 5 . 8 ~ )  

and tan@, = ~ ~ ( 1 - ~ , ) ~ [ i + ( 1 - ~ , ) ~ 1  tani+(-tn < @, < in), (5.8b) 

for the determination of 2, and +,, 

and 

A0 A = A ,  sech (&+sech-lZ,) = 
cosh sf & ( 1 - Z,); sinh sg ' 

(5.9u) 

(5.9b) 

where the alternative signs are vertically ordered. The upper choice yields a 
monotonically decaying (in 6) envelope for which the branch point of L lies outside 
of the domain of integration for (5.6). The lower choice corresponds to a solution for 
which the integration is continued through the branch point, a t  which L changes sign 
and A(6)  has a maximum. These approximations are at least qualitatively valid for 
a < 1 and 0 < q5 < (cf. I1 $5) ,  but they fail to model the n-valued (n > 2) solutions 
that are obtained by numerical integration for q5 > q5* i 127" (see figure 2 f ). 

Letting Z,$O in (5.8) and (5.9) with the upper choice of signs, we obtain A ,  --f cr, +, -+ - iq5 and 

d - t v  exp{i(e&-+#)}, (5.10) 

which, through (4.4), (4.5), (3.1)-(3.5) and (1.4), may be shown to be equivalent to 
(1.7). 

Equations (5.3), (5.4) and (5.6) are identical to I1 (6.5), (6.7) and (6.8), and the two 
problems differ only in the boundary conditions a t  the wavemsker, (5.5) us. I1 (6.6). 
Results for a us. Z,(M us. 2) and a sin @,us. Z,(A, LZavs. Z), as determined by ( 5 4 ,  
are plotted in figure 1. The corresponding results for A and @ for a = 1 are plotted 
in figure 2. 

6. Stationary solutions for D < 0 
If D < 0 the transformation (5.1) carries (4.7) over to 

- sc, (6.lu, b)  d d(ZK) - - ( Z [ L 2 - ~ 2 ( l + Z ) ] }  = K2-C2(1-;Z), L- = 
dz dZ 

in place of (5.3), whilst (5.4)-(5.6) are unchanged. 
Proceeding as in I1 $6, we remark that exact solutions of (6.1) and (5.4)-(5.6) are 
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> 0, possible if either 4 = O(a = 0, /? > 0) and 0 < g < $or  # = ~ ( a  = 0, p < 0) and 
In the former case 

L = 0, K = (l-$Z)i, 2, = 1-(1-4a2)i, @, = 0, (6.2) 

A = A ,  = ($z,)t, @ = @, + (1  -g,)Q (# = 0, a < g), (6.3) 
which describes a progressive wave of constant amplitude.? In  the latter case, 

L = - ( l+Z) i ,  K = 0, 2, = ;[(1+2a2)t-l], @, = --in, (6.4) 

A = 2tcsch(5+sinh-lZ;i), @ = $, (# = n, cr > O ) ,  (6.5) 

which describes a trapped solitary wave. 
The counterparts of (5.7)-(5.9) are (cf. (6.4) and (6.5)) 

L = -s(l+Z);, K = 2c[l+(l+Z):]-', (6.6a, b)  

A: Z,{s2( 1 + 2,) + 4c2[ 1 + (1 + Z,) i ] -2}  = a', ( 6 . 7 ~ )  

tan$-, = -$ ( i+~ , ) t [1+(1+~ , )9  tan$#, (6.7b) 

A = A ,  csch (85 + sinh-' Zit) = A0 
cosh 56 + (1 + Z,)i sinh 56 ' 

( 6 . 8 ~ )  

(6 .8b)  

The left-hand side of (6.7a) is a monotonically increasing function of Z,,  by virtue of 
which ( 6 . 7 ~ )  has only one root, and A decays monotonically in 6. Comparison with 
the results of the integration of (6.1) reveals that (6.7) and (6.8) are in error by less 
than 10% for 0 < 2, < 2. The graphs of A / A ,  and $-@, are qualitatively similar 
to those in figure 2 (a) .  

The numerical computations were carried out by Ms Janet Becker and were 
supported by a block grant of the San Diego Super Computer Cray XMP time. Dr 
Pritchard provided the numerical data for BMP's figure 8 (on which the comparison 
in the Appendix is based). This work also was supported in part by the Physical 
Oceanography Division, National Science Foundation, NSF Grant OCE-85-21823, 
by the DARPA Univ. Res. Init. under Appl. and Comp. Math. Program Contract 
N00014-86-K-0758 administered by Office of Naval Research, and by the Office of 
Naval Research, Contract N00014-84-K-0137, 4322318 (430). 

Appendix. Comparison with Barnard, Mahony & Pritchard (1977) 
BMP refer length and time to b and (b /g ) i  and refer the complex amplitude of the 

dominant mode to exp (iwt) (2)s. exp ( - i d )  in the present formulation). A comparison 
of the two formulations leads to the following equivalences (BMP +Miles) 

B + e, 6 + C(T/n);e, (A l a ,  b )  

(A 2a,  b)  x + x - ~ T - ~ c ~ x ,  A ,  --f d T - f C - t ( q  + ip), 

t A second such solution for q5 = 0 may be obtained by changing the sign of the radical in (6.2), 
but this gives 2, = 2 (rather than 2, = 0)  for u $ 0 ,  which suggests that this second solution is 
unstable. 



298 J .  Miles 

0 8  
1.73 

-1.5 - 1  -0.5 0 0.5 
B 

0 8  

1.71 1.72 1.73 
I I 

I I 

0 c 1.5 - 1  -0.5 
B 

W E  
1.72 1.73 

I 
0 

-4% 
0 0.5 

B 
-1.5 - 1  -0.5 
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$(O) = in + $o; see also (A 1)-(A 3) herein). The solid curves are calculated from the present theory, 
the dashed curves are BMP’s calculated results, and the small circles are BMP’s experimental 
results. 
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The tentative equivalences (A3) follow from a term-by-term comparison of BMP 
(2.22) and (4.1) above and the invocation of (A2). In fact, (A 3a) cannot be satisfied, 
since both q and a are positive, which suggests that the sign of q in BMP (2.22) must 
be wrong (presumably owing to an incorrect evaluation of ii). This conclusion also 
follows from the impossibility of matching their solution to the damped linear 
solution through a limit equivalent to that of (5.10) above. 

The equivalence (A 3b) implies, through BMP (2.16) and (2.17), 

2T12 + 3Ts + 12T4 - 9 
8Ts 

D =  , 

(4D/.n4T2 in BMP’s notation) in place of (3.9 a).  The difference between (3.9a) and 
(A 4) appears to stem in part from an algebraic or typographic slip, such that T2 
appears in place of T, and, more fundamentally, from BMP’s adoption of the self- 
interaction coefficient for standing waves in a closed basin (Tadjbakhsh & Keller 
1960), for which the volumetric displacement JJcdxdy = m must vanish. This 
constraint need not hold for a semi-infinite channel, since a finite value of m may be 
compensated by an infinitesimal change in the mean elevation over the infinite free 
surface to ensure conservation of mass ; indeed, m $: 0 is necessary in order to cancel 
the secular (linear in t )  growth of q5 in a channel of finite depth (see remarks following 
(3.6) above, Larraza & Putterman 1984 and Miles 1984). The difference vanishes for 
deep-water waves (T = l),  for which D = D = 1 ;  on the other hand, D / D  - 
l / ( k d ) 4  as kd J. 0. 

Equations (5.3) and (5.4) above are equivalent to BMP (3.20) and (3.21) after 
invoking (A 2) and (A 3) and changing the sign of q, which implies a change in the 
sign of the phase $; however, BMP (3.20) and (3.21) contain three (subsequently 
reduced to two) parameters, whereas (5.3) and (5.4) contain only the single 
parameter q5. BMP use essentially the same methods of integration as those used here 
and in 11, and they find that the equivalent of uvs. 2, may be triple-valued in certain 
parametric ranges (see their figure 3) ; however, they do not report the possibility of 
n-valued results with n > 3 (cf. figure id-f above), presumably because they did not 
investigate values of (the equivalents of)  q5 near 7~ for sufficiently large u. 

A comparison of the present results for A vs. 6 for u = 0.485 and q5 = 0.927~ with 
BMP’s calculated results (figure 9c) for 5vs.X for p = - 17.32, q = 4.402 and 
r = 74.96 yields agreement within the accuracy with which the plots can be read. 
(BMP’s calculated results are within 10-20 % of their experimental measurements 
for this case, for which T = 0.948 implies D = 0.882 and D = 0.712.) BMP do not 
present calculated results for $vs. 6 but do give both calculated and measured results 
(their figure 8) for $,,(q5(0)-;7~ in their notation), which are compared with the 
present theory in figure 3. The present results are somewhat closer to the observed 
values than are BMP’s calculated values, possibly owing to the error in their 
calculation of D, but the differences are small. Perhaps the most interesting 
difference is that the present theory predicts three branches of $, for w < w1 in 
figure 3 (a, b )  but that the intermediate branch is not observed, presumably because 
it is unstable. 
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